Technology
Carbon Mapper has assembled a team of world-class science and engineering organizations to achieve its public good mission of methane and CO2 monitoring and mitigation.
Teaming JPL and Planet together created a unique solution: a high sensitivity, moderate resolution payload and agile satellite platforms that can deliver the required precision (detection limit), spatial coverage, and temporal sampling (see Table 1). By persistently tracking and pinpointing point source emissions at individual facilities, Carbon Mapper is designed to complement other observing systems capable of tracking net regional emissions and extremely large point sources. We accomplish this observing strategy by tasking our satellites to acquire data over priority areas based on a combination of prior knowledge of infrastructure locations and follow-up based on “tips” from other satellites designed for wider area monitoring. The target deck figure shown here provides an example of potential priority areas in the US and Canada; there are similar patterns in other parts of the world. This is the same basic tasking approach used by Planet’s constellation of Skysat satellites and is enabled by the moderate field of view provided by JPL’s spectrometer payload design. The system includes other observing modes: glint mode for tracking methane emissions from offshore oil and gas platforms and pushbroom mapping for larger area coverage.

Sampling frequency is a major design driver for Carbon Mapper. The ability to detect intermittent emissions demands more frequent sampling than conventional surface-based protocols (e.g., quarterly to annually). The Carbon Mapper full constellation is designed to provide daily to weekly sampling depending on target prioritization. This is enabled by Planet’s agile satellites which are able to quickly point at target areas in both the cross- and along-track directions, as well as the spectrometer’s tolerance to relatively large off-nadir angles.
In addition to methane, Carbon Mapper is capable of tracking emissions of the other major carbon molecule, CO2, from large industrial facilities. We have demonstrated the ability to detect and quantify CO2 emissions from in the US and internationally with both our airborne prototypes and experimental satellites (e.g., PRISMA) and predict Carbon Mapper will have a detection limit of about 300,000 kgCO2/hr for a 5 m/s wind speed. This is sufficient to directly image and track CO2 emissions at 90% of the world’s coal power plants along with many refineries and large gas power plants. Most cement and other industrial process emissions are likely below our detection limit.
