Resources

Related Journal Articles and Reports

2022

  • Yu, J., Hmiel, B., Lyon, D. R., Warren, J., Cusworth, D. H., Duren, R. M., Chen, Y., Murphy, E. C., & Brandt, A. R. (2022). Methane emissions from natural gas gathering pipelines in the Permian Basin. Environmental Science & Technology Letters. https://doi.org/10.1021/acs.estlett.2c00380

  • Cusworth, D. H., Thorpe, A. K., Ayasse, A. K., Stepp, D., Heckler, J., Asner, G. P., Miller, C. E., Chapman, J. W., Eastwood, M. L., Green, R. O., Hmiel, B., Lyon, D., & Duren, R. M. (2022). Strong methane point sources contribute a disproportionate fraction of total emissions across multiple basins in the U.S. PNAS. https://www.pnas.org/doi/10.1073/pnas.2202338119
  • Ayasse, A. K., Thorpe, A. K., Cusworth, D. H., Kort, E. A., Negron, A. G., Heckler, J., Asner, G., & Duren, R. M. (2022). Methane remote sensing and emission quantification of offshore shallow water oil and gas platforms in the Gulf of Mexico. Environmental Research Letters. https://doi.org/10.1088/1748-9326/ac8566
  • Lauvaux, T., Giron, C., Mazzolini, M., d’Aspremont, A., Duren, R., Cusworth, D., Shindell, D., & Ciais, P. (2022). Global assessment of oil and gas methane ultra-emitters. Science. https://doi.org/10.1126/science.abj4351 
  • Jongaramrungruang, S., Frankenberg, C., Thorpe, A. K., & Matheou, G. (2022). MethaNet – an AI-driven approach to quantifying methane point-source emission from high-resolution 2-D plume imagery. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2021.112809 

2021

  • Cusworth, D. H., Bloom, A. A., Ma, S., Miller, C. E., Bowman, K., Yin, Y., Maasakkers, J. D., Zhang, Y., Scarpelli, T. R., Qu, Z., Jacob, D. J., & Worden, J. R. (2021). A Bayesian framework for deriving sector-based methane emissions from top-down fluxes. Nature. https://doi.org/10.1038/s43247-021-00312-6
  • Irakulis-Loitxate, I., Guanter, L., Liu, Y., Varon, D. J., Maasakkers, J. D., Zhang, Y., Chulakadabba, A., Wofsy, S. C., Thorpe, A. K., Duren, R. M.,  Frankenberg, C., Lyon, D. R., Hmiel, B., Cusworth, D. H., Zhang, Y., Segl, K., Gorroño, J., Sánchez-García, E., Sulprizio, M. P., Cao, K., Zhu, H., Liang, J., Li, X., Aben, I., & Jacob, D. J. (2021). Satellite-based survey of extreme methane emissions in the Permian basin. Science. https://doi.org/10.1126/sciadv.abf4507
  • Cusworth, D. H., Duren, R. M., Thorpe, A. K., Olson-Duvall, W., Heckler, J., Chapman, J. W., Eastwood, M. L., Helmlinger, M. C., Green, R. O., Asner, G. P., Dennison, P. E., & Miller, C. E. (2021). Intermittency of Large Methane Emitters in the Permian Basin. Environmental Science & Technology Letters. https://doi.org/10.1021/acs.estlett.1c00173
  • Cusworth, D. H., Duren, R. M., Thorpe, A. K., Dennison, P. E., Frankenberg, C., Heckler, J., Asner, G. P., Eastwood, M., Green, R. O., & Miller, C. E. (2021). Carbon dioxide emissions from power plants can be quantified globally using remote sensing. AGU Advances. https://doi.org/10.1029/2020AV000350
  • Foote, M. D., Dennison, P. E., Sullivan, P. R., O’Neill, K. B., Thorpe, A. K., Thompson, D. R., Cusworth, D. H., Duren, R. M., Joshi, S. C. (2021). Impact of scene-specific absorption spectra on matched filter greenhouse gas retrievals from imaging spectroscopy. Remote Sensing of the Environment. https://doi.org/10.1016/j.rse.2021.112574
  • Irakulis-Loitxate, I., Guanter, L., Liu, Y., Varon, D. J., Maasakkers, J. D., Zhang, Y., Chulakadabba, A., Wolfsy, S. C., Thorpe, A. K., Duren, R. M., Frankenberg, C., Lyon, D., Hmiel, B., Cusworth, D. H., Zhang, Y., Segl, K., Gorrono, J., Sanchez-Garcia, E., Sulprizio, M. P., Cao, K., Zhu, H., Liang, J., Li, X., Aben, I., & Jacob, D. J. (2021). Satellite-based survey of extreme methane emissions in the Permian Basin. Science Advances. https://doi.org/10.1126/sciadv.abf4507
  • Thorpe, A. K., O’Handley, C., Emmitt, G. D., DeCola, P. L., Hopkins, F. M., Yadav, V., Guha, A., Newman, S., Herner, J. D., Falk, M., & Duren, R. M.  (2021). Improved methane emission estimates using AVIRIS-NG and an Airborne Doppler Wind Lidar. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2021.112681
2020
  • Cusworth, D. H., Duren, R. M., Thorpe, A. K, Miller, C. E., Pandey, S., Maasakkers, J. D., Aben, I., Jervis, D., Varon, D., Jacob, D. J., Randles, C. R., Smith, M., Gautam, R., Omara, M., Schade, G., Dennison, P. E., Frankenberg, C., Gordon, D., & Lopinto, E. (2020c). Multi-satellite imaging of a gas well blowout enables quantification of total methane emissions. Geophysical Research Letters. https://doi.org/10.1029/2020GL090864
  • Borchardt, J., Gerilowski, K., Krautwurst, S., Bovensmann, H., Thorpe, A. K., Thompson, D. R., Frankenberg, C., Miller, C. E., Duren, R. M., & Burrows, J. P. (2020). Detection and quantification of CH4 plumes using the WFM-DOAS retrieval on AVIRIS-NG hyperspectral data. Atmospheric Measurement Techniques. https://doi.org/10.5194/amt-14-1267-2021
  • Cusworth, D. H., Duren, R. M., Thorpe, A. K., Tseng, E., Thompson, D. R., Guha, A., Newman, S., Foster, K., & Miller, C. E. (2020b). Using remote sensing to detect, validate, and quantify methane emissions from California solid waste operations. Environmental Research Letters. https://iopscience.iop.org/article/10.1088/1748-9326/ab7b99
  • Cusworth, D. H., Duren, R. M., Yadav, V., Thorpe, A. K., Verhulst, K., Sander, S., Hopkins, F., Rafiq, T., & Miller, C. E. (2020a). Synthesis of Methane Observations Across Scales: Strategies for Deploying a Multitiered Observing Network. Geophysical Research Letters. https://doi.org/10.1029/2020GL087869
  • Foote, M. D., Dennison, P. E., Thorpe, A. K., Thompson, D. R., Jongaramrungruang, S., Frankenberg, C., & Joshi, S. C. (2020). Fast and accurate retrieval of point-source methane emissions from imaging spectrometer data using sparsity prior. IEEE Transactions on Geoscience and Remote Sensing. https://ieeexplore.ieee.org/document/9034492
  • Guha, A., Newman, S., Fairley, D., Dinh, T. M., Duca, L., Conley, S., Smith, M. L., Thorpe, A. K., Duren, R. M., Cusworth, D., & Foster, K. (2020). Assessment of Regional Methane Emissions Inventories through Airborne Quantification in the San Francisco Bay Area. Environmental Science & Technology. https://doi.org/10.1021/acs.est.0c01212
  • Rafiq, T., Duren, R. M., Thorpe, A. K., Foster, K., Patarsuk, R., Mille, C. E., & Hopkins, F. M. (2020). Attribution of Methane Point Source Emissions using Airborne Imaging Spectroscopy and the Vista-California Methane Infrastructure Dataset. Environmental Research Letters. https://iopscience.iop.org/article/10.1088/1748-9326/ab9af8
  • Thorpe, A. K., Duren, R., Conley, S., Prasad, K., Bue, B., Yadav, V., Foster, K., Rafiq, T., Hopkins, F., Smith, M., & Fischer, M. L. (2020). Methane emissions from underground gas storage in California. Environmental Research Letters. https://iopscience.iop.org/article/10.1088/1748-9326/ab751d/meta
2019
  • Ayasse, A. K., Dennison, P. E., Foote, M., Thorpe, A. K., Joshi, S., Green, R. O., Duren, R. M., Thompson, D. R., & Roberts, D. A. (2019). Methane Mapping with Future Satellite Imaging Spectrometers. Remote Sensing. https://doi.org/10.3390/rs11243054
  • Cusworth, D. H., Jacob, D. J., Varon, D. J., Miller, C. C., Lu, X., Chance, K., Thorpe, A. K., Duren, R. M., Miller, C. E., Frankenberg, C., & Randles, C. A. (2019). Potential of next-generation imaging spectrometers to detect and quantify methane point sources from space. Atmospheric Measurement Techniques. https://doi.org/10.5194/amt-12-5655-2019
  • Duren, R. M., Thorpe, A. K., Foster, K., Rafiq, T., Hopkins, F. M., Yadav, V., Bue, B. D., Conley, S., Colombi, N., McCubbin, I., Frankenberg, C., Thompson, D. R., Falk, M., Herner, J., Croes, B., Green, R. O., & Miller, C. E. (2019). California’s methane super-emitters. Nature. https://www.nature.com/articles/s41586-019-1720-3
  • Jongaramrungruang, S., Frankenberg, C., Matheou, G., Thorpe, A. K., Kuai, L., Thompson, D. R., & Duren, R. M. (2019). Towards accurate methane point-source quantification using high spatial resolution spatial methane mapping. Atmospheric Measurement Techniques. https://doi.org/10.5194/amt-12-6667-2019
  • Thompson, D. R., Guanter, L., Berk, A., Gao, B.-C., Richter, R., Schläpfer, D., & Thom, K. J. (2019). Retrieval of Atmospheric Parameters and Surface Reflectance from Visible and Shortwave Infrared Imaging Spectroscopy Data. Surveys in Geophysics. https://doi.org/10.1007/s10712-018-9488-9
2018
  • Ayasse, A. K., Thorpe, A. K., Roberts, D. A., Funk, C. C., Dennison, P. E., Frankenberg, C., Steffke, A., & Aubrey, A. D. (2018). Evaluating the effects of surface properties on methane retrievals using a synthetic Airborne Visible/Infrared Imaging Spectrometer Next Generation (AVIRIS-NG) image. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2018.06.018

2017

  • Krautwurst, S., Gerilowski, K., Jonsson, H. H., Thompson, D. R., Kolyer, R. W., Iraci, L. T., Thorpe, A. K., Horstjann, M., Eastwood, M., Leifer, I., & Vigil, S. A. (2017). Methane emissions from a Californian landfill, determined from airborne remote sensing and in situ measurements. Atmospheric Measurement Techniques. https://doi.org/10.5194/amt-10-3429-2017
  • Thorpe, A. K., Frankenberg, C., Thompson, D. R., Duren, R. M., Aubrey, A. D., Bue, B. D., Green, R. O., Gerilowski, K., Krings, T., Borchardt, J., & Kort, E. A. (2017). Airborne DOAS retrievals of methane, carbon dioxide, and water vapor concentrations at high spatial resolution: Application to AVIRIS-NG. Atmospheric Measurement Techniques. https://doi.org/10.5194/amt-10-3833-2017

2016           2015

  • Frankenberg, C., Thorpe, A. K., Thompson, D. R., Hulley, G., Kort, E. A., Vance, N., Borchardt, J., Krings, T., Gerilowski, K., Sweeney, C., & Conley, S. (2016). Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.1605617113
  • Thompson, D. R., Thorpe, A. K., Frankenberg, C., Green, R. O., Duren, R., Guanter, L., Hollstein, A., Middleton, E., Ong, L., & Ungar, S. (2016). Space‐based remote imaging spectroscopy of the Aliso Canyon CH4 superemitter. Geophysical Research Letters. https://doi.org/10.1002/2016GL069079
  • Thorpe, A. K., Frankenberg, C., Aubrey, A. D., Roberts, D. A., Nottrott, A. A., Rahm, T. A., Sauer, J. A., Dubey, M. K., Costigan, K. R., Arata, C., Steffke, A. M., Hills, S., Haselwimmer, C., Charlesworth, D., Funk, C. C., Green, R. O., Lundeen, S. R., Boardman, J. W., Eastwood, M. L., Sarture, C. M., Notle, S. H., Mccubbin, I. B., Thompson, D. R., & McFadden, J. P. (2016a). Mapping methane concentrations from a controlled release experiment using the next generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG). Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2016.03.032
  • Thorpe, A. K., Frankenberg, C., Green, R. O., Thompson, D. R., Mouroulis, P., Eastwood, M. L., & Matheou, G. (2016b). The Airborne Methane Plume Spectrometer (AMPS): Quantitative imaging of methane plumes in real time, paper presented at Aerospace Conference, 2016 IEEE.
  • Aubrey, A. D., Frankenberg, C., Green, R. O., Eastwood, M. L., Thompson, D. R., & Thorpe, A. K. (2015). Crosscutting airborne remote sensing technologies for oil and gas and earth science applications, paper presented at Offshore Technology Conference, Houston, Texas.
  • Thompson, D. R., Leifer, I., Bovensmann, H., Eastwood, M. L., Green, R. O., Eastwood, M. L., Fladeland, M., Frankenberg, C., Gerilowski, K., Green, R. O., Kratwurst, S., Krings, T., Luna, B., & Thorpe, A. K. (2015). Real time remote detection and measurement for airborne imaging spectroscopy: A case study with methane. Atmospheric Measurement Techniques. https://doi.org/10.5194/amt-8-4383-2015
2014
  • Thorpe, A. K., Frankenberg, C., & Roberts, D. A. (2014). Retrieval techniques for airborne imaging of methane concentrations using high spatial and moderate spectral resolution: Application to AVIRIS. Atmospheric Measurement Techniques. https://doi.org/10.5194/amt-7-491-2014

2013

  • Dennison, P. E., Thorpe, A. K., Qi, Y., Roberts, D. A., & Green, R. O. (2013a). Modeling sensitivity of imaging spectrometer data to carbon dioxide and methane plumes. Proceedings of Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS). 10.1109/WHISPERS.2013.8080614
  • Dennison, P. E., Thorpe, A. K., Qi, Y., Roberts, D. A., Green, R. O., Bradley, E. S., & Funk, C. C. (2013b). High spatial resolution mapping of elevated atmospheric carbon dioxide using airborne imaging spectroscopy: Radiative transfer modeling and power plant plume detection. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2013.08.001
  • Thorpe, A. K., Roberts, D. A., Bradley, E. S., Funk, C. C., Dennison, P. E., & Leifer I. (2013). High resolution mapping of methane emissions from marine and terrestrial sources using a Cluster-Tuned Matched Filter technique and imaging spectrometry. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2013.03.018

2012

  • Thorpe, A. K., Roberts, D. A., Dennison, P. E., Bradley, E. S., & Funk, C. C. (2012). Point source emissions mapping using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Proceedings of SPIE. https://doi.org/10.1117/12.918958