Related Journal Articles and Reports


  • Cusworth, D. H., Duren, R. M., Thorpe, A. K., Olson-Duvall, W., Heckler, J., Chapman, J. W., Eastwood, M. L., Helmlinger, M. C., Green, R. O., Asner, G. P., Dennison, P. E., Miller, C. E. Intermittent methane emissions in the Permian basin. Environmental Science & Technology Letters, in review.
  • Cusworth, D.H., Duren, R.M., Thorpe, Dennison, P.E., Frankenberg, C., Heckler, J., Asner, G.P., Eastwood, M., Green, R.O., Miller, C.E. (2021). Carbon dioxide emissions from power plants can be quantified globally using remote sensing, AGU Advance, in press.
  • Foote, M. D., Dennison, P. E., Sullivan, P. R., O’Neill, K. B., Thorpe, A. K., Thompson, D. R., Cusworth, D. H., Duren, R. M., Joshi, S. C. Impact of scene-specific absorption spectra on matched filter greenhouse gas retrievals from imaging spectroscopy, Remote Sensing of the Environment, in review.
  • Irakulis-Loitxate, I., Guanter, L., Liu, Y., Varon, D.J., Maasakkers, J.D., Zhang, Y., Chulakadabba, A., Wolfsy, S.C., Thorpe, A.K., Duren, R.M., Frankenberg, C., Lyon, D., Hmiel, B., Cusworth, D.H., Zhang, Y., Segl, K., Gorrono, J., Sanchez-Garcia, E., Sulprizio, M.P., Cao, K., Zhu, H., Liang, J., Li, X., Aben, I., Jacob, D.J. Satellite-based survey of extreme methane emissions in the Permian Basin, Science Advances, in review.
  • Jongaramrungruang, S., Frankenberg, C., Thorpe, A.K., Matheou, G. MethaNet – an AI-driven approach to quantifying methane point-source emission from high-resolution 2-D plume imagery, Remote Sensing of Environment, in review.
  • Thorpe, A.K., O’Handley, C., Emmitt, G.D., DeCola, P.L., Hopkins, F.M., Yadav, V., Guha, A., Newman, S., Herner, J.D., Falk, M., Duren, R.M. Improved methane emission estimates using AVIRIS-NG and an Airborne Doppler Wind Lidar, Remote Sensing of Environment, in review.
  • Cusworth, D.H., Duren, R.M., Thorpe, A.K, Miller, C.E., Pandey, S., Maasakkers, J.D., Aben, I., Jervis, D., Varon, D., Jacob, D.J., Randles, C.R., Smith, M., Gautam, R., Omara, M., Schade, G., Dennison, P.E., Frankenberg, C., Gordon, D., Lopinto, E. (2020c). Multi-satellite imaging of a gas well blowout enables quantification of total methane emissions. Geophysical Research Letters, p.e2020GL090864.
  • Borchardt, J., Gerilowski, K., Krautwurst, S., Bovensmann, H., Thorpe, A.K., Thompson, D.R., Frankenberg, C., Miller, C.E., Duren, R.M. and Burrows, J.P. (2020). Detection and quantification of CH4 plumes using the WFM-DOAS retrieval on AVIRIS-NG hyperspectral data. Atmospheric Measurement Techniques.
  • Cusworth, D.H., Duren, R.M., Thorpe, A.K., Tseng, E., Thompson, D.R., Guha, A., Newman, S., Foster, K., Miller, C.E. (2020b). Using remote sensing to detect, validate, and quantify methane emissions from California solid waste operations. Environmental Research Letters, 15(5), 054012.
  • Cusworth, D.H., Duren, R.M., Yadav, V., Thorpe, A.K., Verhulst, K., Sander, S., Hopkins, F., Rafiq, T. and Miller, C.E. (2020a). Synthesis of Methane Observations Across Scales: Strategies for Deploying a Multitiered Observing Network. Geophysical Research Letters, 47(7), p.e2020GL087869.
  • Foote, M.D., Dennison, P.E., Thorpe, A.K., Thompson, D.R., Jongaramrungruang, S., Frankenberg, C., Joshi, S.C. (2020). Fast and accurate retrieval of point-source methane emissions from imaging spectrometer data using sparsity prior. IEEE Transactions on Geoscience and Remote Sensing, 58, 6480-6492.
  • Guha, A., Newman, S., Fairley, D., Dinh, T.M., Duca, L., Conley, S., Smith, M.L., Thorpe, A., Duren, R.M., Cusworth, D. and Foster, K. (2020). Assessment of Regional Methane Emissions Inventories through Airborne Quantification in the San Francisco Bay Area. Environmental Science & Technology.
  • Rafiq, T., Duren, R.M., Thorpe, A.K., Foster, K, Patarsuk, R., Mille, C.E., Hopkins, F.M. (2020). Attribution of Methane Point Source Emissions using Airborne Imaging Spectroscopy and the Vista-California Methane Infrastructure Dataset. Environmental Research Letters.
  • Thorpe, A.K., Duren, R., Conley, S., Prasad, K., Bue, B., Yadav, V., Foster, K., Rafiq, T., Hopkins, F., Smith, M. and Fischer, M.L. (2020). Methane emissions from underground gas storage in California. Environmental Research Letters, 15(4), 045005.
  • Ayasse, A.K., Dennison, P.E., Foote, M., Thorpe, A.K., Joshi, S., Green, R.O., Duren, R.M., Thompson, D.R. and Roberts, D.A. (2019). Methane Mapping with Future Satellite Imaging Spectrometers. Remote Sensing, 11(24), p.3054.
  • Cusworth, D.H., Jacob, D.J., Varon, D.J., Miller, C.C., Lu, X., Chance, K., Thorpe, A.K., Duren, R.M., Miller, C.E., Frankenberg, C., Randles, C.A. (2019). Potential of next-generation imaging spectrometers to detect and quantify methane point sources from space. Atmospheric Measurement Techniques.
  • Duren, R.M., Thorpe, A.K., Foster, K., Rafiq, T., Hopkins, F.M., Yadav, V., Bue, B.D., Conley, S., Colombi, N., McCubbin, I., Frankenberg, C., Thompson, D.R., Falk, M., Herner, J., Croes, B., Green, R.O., Miller, C.E. (2019). California’s methane super-emitters. Nature.
  • Jongaramrungruang, S., Frankenberg, C., Matheou, G., Thorpe, A.K., Kuai, L., Thompson, D.R., Duren, R. M. (2019). Towards accurate methane point-source quantification using high spatial resolution spatial methane mapping. Atmospheric Measurement Techniques.
  • Thompson, D.R., Guanter, L., Berk, A. et al. Retrieval of Atmospheric Parameters and Surface Reflectance from Visible and Shortwave Infrared Imaging Spectroscopy Data. Surv Geophys 40, 333–360 (2019).
  • Ayasse, A.K., Thorpe, A.K., Roberts, D.A., Funk, C.C., Dennison, P.E., Frankenberg, C., Steffke, A., Aubrey, A.D. (2018). Evaluating the effects of surface properties on methane retrievals using a synthetic Airborne Visible/Infrared Imaging Spectrometer Next Generation (AVIRIS-NG) image. Remote Sensing of Environment, 215, 386-397.


  • Krautwurst, S., Gerilowski, K., Jonsson, H.H., Thompson, D.R., Kolyer, R.W., Iraci, L.T., Thorpe, A.K., Horstjann, M., Eastwood, M., Leifer, I., Vigil, S.A. (2017). Methane emissions from a Californian landfill, determined from airborne remote sensing and in situ measurements. Atmospheric Measurement Techniques, 10(9), 3429.
  • Thorpe, A.K., Frankenberg, C., Thompson, D.R., Duren, R.M., Aubrey, A.D., Bue, B.D., Green, R.O., Gerilowski, K., Krings, T., Borchardt, J., Kort, E.A. (2017). Airborne DOAS retrievals of methane, carbon dioxide, and water vapor concentrations at high spatial resolution: Application to AVIRIS-NG. Atmospheric Measurement Techniques, 10(10), 3833.


  • Frankenberg, C., Thorpe, A.K., Thompson, D.R., Hulley, G., Kort, E.A., Vance, N., Borchardt, J., Krings, T., Gerilowski, K., Sweeney, C., Conley, S. (2016). Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region. Proceedings of the National Academy of Sciences, 201605617.
  • Thompson, D.R., Thorpe, A.K., Frankenberg, C., Green, R.O., Duren, R., Guanter, L., Hollstein, A., Middleton, E., Ong, L., Ungar, S. (2016). Space‐based remote imaging spectroscopy of the Aliso Canyon CH4 superemitter. Geophysical Research Letters, 43(12), 6571-6578.
  • Thorpe, A.K., Frankenberg, C., Roberts, et al. (2016a). Mapping methane concentrations from a controlled release experiment using the next generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG). Remote Sensing of Environment, 179, 104-115.
  • Thorpe, A. K., Frankenberg, C., Green, R. O., Thompson, D. R., Mouroulis, P., Eastwood, M.L., Matheou, G. (2016b). The Airborne Methane Plume Spectrometer (AMPS): Quantitative imaging of methane plumes in real time, paper presented at Aerospace Conference, 2016 IEEE.
  • Aubrey, A.D., Frankenberg, C., Green, R.O., Eastwood, M.L., Thompson, D.R., Thorpe, A.K. (2015). Crosscutting airborne remote sensing technologies for oil and gas and earth science applications, paper presented at Offshore Technology Conference, Houston, Texas.
  • Thompson, D.R., Leifer, I., Bovensmann, H., Eastwood, M.L., Green, R.O., Eastwood, M.L., Fladeland, M., Frankenberg, C., Gerilowski, K., Green, R.O., Kratwurst, S., Krings, T., Luna, B., Thorpe, A.K. (2015). Real time remote detection and measurement for airborne imaging spectroscopy: A case study with methane. Atmospheric Measurement Techniques, 8, 4383-4397.
  • Thorpe, A.K., Frankenberg, C., Roberts, D.A. (2014). Retrieval techniques for airborne imaging of methane concentrations using high spatial and moderate spectral resolution: Application to AVIRIS. Atmospheric Measurement Techniques, 7, 491-506.


  • Dennison, P.E., Thorpe, A.K., Qi, Y., Roberts, D.A., Green, R.O. (2013a). Modeling sensitivity of imaging spectrometer data to carbon dioxide and methane plumes. Proc. Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS).
  • Dennison, P.E., Thorpe, A.K., Qi, Y., Roberts, D.A., Green, R.O., Bradley, E.S., Funk, C.C. (2013b). High spatial resolution mapping of elevated atmospheric carbon dioxide using airborne imaging spectroscopy: Radiative transfer modeling and power plant plume detection. Remote Sensing of Environment, 139, 116–129.
  • Thorpe, A.K., Roberts, D.A., Bradley, E.S., Funk, C.C., Dennison, P.E., Leifer I. (2013). High resolution mapping of methane emissions from marine and terrestrial sources using a Cluster-Tuned Matched Filter technique and imaging spectrometry. Remote Sensing of Environment, 134, 305–318.


  • Thorpe, A.K., Roberts, D.A., Dennison, P.E., Bradley, E.S., Funk, C.C. (2012). Point source emissions mapping using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Proc. SPIE, 8390, 839013